
 1

1 Input Pajek file description

Program PajekToSvgAnim reads Pajek project (.PAJ) file and generates output .SVG,

.SVG.GZ and .HTML files (.SVG.GZ file is compressed .SVG file in GZIP format for faster

loading generated objects in the SVG window when opening .HTML file in Internet

Explorer). Output .HTML file with embedded .SVG window is supported to be correctly

opened, loaded and depicted with the following browsers: Internet Explorer, Mozilla Firefox

and Google Chrome – with some limitations as shown in the table below:

Browser Required preinstalled software
Not supported
PajekToSvgAnim features

Internet Explorer

Adobe SVG Viewer

https://www.adobe.com/devnet/svg/adobe-

svg-viewer-download-area.html None
Mozilla Firefox None None

Google Chrome None
Checkboxes in .HTML
window (they have no impact)

Input Pajek file must have the following structure (in the multiple network case with N

vertices, R relations and M time points):

*Network network name
*Vertices N
 1 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
 2 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
 …
 N "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
*Arcs :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Arcs :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
…
*Arcs :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Network network name in time point T1

*Vertices N1

 1 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
 2 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]

 2

 …
 N1 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
*Arcs :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Arcs :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
…
*Arcs :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Network network name in time point T2

*Vertices N2

 1 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
 2 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
 …
 N2 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
*Arcs :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Arcs :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
…
*Arcs :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
…
*Network network name in time point TM

*Vertices NM

 1 "lab" coordX koordY value shape x_fact factX y_fact factY ic color [activ_int]
 2 "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
 …
 NM "lab" coordX coordY value shape x_fact factX y_fact factY ic color [activ_int]
*Arcs :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :1 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Arcs :2 "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :2 "relation name"

 3

 init_vertex term_vertex value w width c color [activ_int]
 …
…
*Arcs :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Edges :R "relation name"
 init_vertex term_vertex value w width c color [activ_int]
 …
*Partition "partition name"
*Vertices N
1 / 0
1 / 0 N
…
1 / 0

First, the input Pajek file specifies the data of the whole temporal network with all the vertices

and lines and their properties. Then, time slices of network for each time point are listed.

Time slices contain just the vertices and lines which are active in time points.

The input Pajek file is ended by a special vertex partition, which specifies for each vertex

whether its label is visible or not in the network layout (value 1: label is visible, value 0: label

is not visible).

Vertex and line properties in the individual networks are standard properties, defined in the

program package Pajek. A vertex can have the following properties:

- label (required),

- coordinates x and y (real number in [0,1]; required),

- value (required for the first vertex; if the first vertex is the only vertex with specified

 value, all subsequent vertices have the same value, too),

- shape (required for the first vertex; see analogous explanation for the vertex value),

- factor in x direction,

- factor in y direction (program considers factor in x direction also for y direction),

- color,

- activity interval (required for the first vertex; see analogous explanation for the

 vertex value).

A line can have the following properties:

- initial vertex (required),

- terminal vertex (required),

- value (required)

- width (integer in (0, …]; equal to value, if not specified)

- color,

}

 4

- activity interval (required).

There is no need for preparing the whole input Pajek file, containing the temporal network

and all subsequent time slices. It is enough to prepare just the first part that is the data of the

temporal network with vertices, lines and their properties. The subsequent time slices are

generated automatically using the Pajek command Net → Transform → Generate in Time →

All, which takes three arguments: the first time point, the last time point and the step.

After generating time slices, we use program package Pajek also to find an optimal dynamic

layout of the temporal network. In Pajek, several commands for optimal static layout are

implemented, for example the energy command Layout → Energy → Kamada-Kawai →

Free (Draw screen), which move vertices to locations that minimize the variations in line

length. Using this command will produce aesthetic static layout.

To achieve optimal dynamic layout, however, it is necessary to consider additional aesthetic

criterion known as "preserving the mental map" or dynamic stability. The term mental map

refers to the abstract information a user forms by looking at the layout of a network. In the

context of dynamic layout changes to this map should be minimal, in other words dynamic

layout should preserve the mental map. Technically, the horizontal and vertical order of

vertices should stay the same when changing positions.

Most common approach is to find the optimal static layout just for the whole network and

then use that layout for subsequent time slices. Thus, each vertex has just one position in all

time points in which it is present.

In Pajek, this can be done for example by applying the energy command Kamada-Kawai on

the layout of the whole network and then using the command Next to produce the layouts for

the subsequent time slices. Additionally, we can use the command Append to Pajek Project

file to save fixed positions or minor movements of vertices (in the current time slice layout) to

Pajek project file. In this way we gradually build up dynamically stable layout of the network

before using the program PajekToSvgAnim, which actually generates the dynamic layout.

 5

2 PajekToSvgAnim GUI

At startup of the program PajekToSvgAnim the Main window opens. The user can select

input Pajek file and output .SVG file and run the SVG objects generation command (Picture

1). The program offers some additional choices for adjusting the dynamic layout. These

choices are explained in detail in the next chapter.

The menu in the Main window contains the following commands:

- File → Source: for selecting input Pajek file.

- File → Output: for selecting output .SVG file.

- File → Exit: for exiting the program.

- Svg → Generate – Internet Explorer 9 or later:

 for generating output files for Internet Explorer 9 or later

- Svg → Generate – Internet Explorer 8 or earlier:

 for generating output files for Internet Explorer 8 or earlier

- Svg → Generate – Firefox/Chrome:

 for generating output files for Mozilla Firefox and Google Chrome

 - Info → About: information about current version of the program.

On Picture 1 the Main window is shown. When input Pajek file is selected, the name and the

location of the output .SVG file is automatically set to the input Pajek file name with .SVG

extension and the same location. In the bottom right of the window the Status line shows

whether the network structure in the input file is syntactically correct.

The size of SVG window is also automatically set and can be changed.

Picture 1: Input Pajek file selection in the Main window of the program PajekToSvgAnim.

 6

When the input Pajek file is selected and checked, the command Svg → Generate from the

menu can be used to run the generation of the .SVG, .SVG.GZ and .HTML files. If the output

files are generated successfully, the confirmative message appears. (Picture 2). Opening the

output .HTML file results in dynamic layout of the network from the input file. HTML

window contains SVG window and the checkboxes for showing the vertex labels and the

relations in the multiple network case (Picture 3a and Picture 3b). The output .HTML file is

linked to compressed .SVG.GZ file for faster loading generated objects in the SVG window.

On Picture 3a and Picture 3b the usage of additional functionality and additional feature of the

program PajekToSvgAnim are shown. First, the Status line contains the description of actual

time point. In order to use this functionality it is necessary to create a tab delimited data file

TIMES.TXT in the same folder as input Pajek data file, which should look like this:

1 The description of the first time point
2 The description of the second time point
3 The description of the third time point
….
Second, the Status line contains also the progress bar for showing the duration length of

dynamic passes between time points.

Picture 2: Confirmative message after the successful generation of the SVG objects in the

program PajekToSvgAnim.

 7

Picture 3a: SVG window inside HTML window shows dynamic layout of the selected

network (vertices are shown with labels and values).

Picture 3b: Upper HTML window without showing vertex values (only labels are shown).

 8

3 Instructions for using program PajekToSvgAnim

PajekToSvgAnim GUI contains several choices for satisfying user needs and preferences.

After selecting the input Pajek file and the name and path of the output .SVG file the user can

adjust the following choices:

- The duration length of dynamic layout of network passing from one time point to

 another (Slide time).

- The duration length of static layout of network in time point before passing to

 the next time point (Pause time).

- Numerical list of dynamic passes of network between time points to be shown.

 (Animated slides).

 Example: Animated slides: 1, 5-10, 12-*.

 In this case the layouts of the network go by self in the following order:

1. Dynamic layout of network passing from first to second time point with

corresponding static layouts in the first and second time point.

2. Static layouts in the 3rd and 4th time point.

3. Dynamic layouts of network passing from 5th to 10th time point with

corresponding static layouts.

4. Static layout in the 11th time point.

5. Dynamic layouts of network passing from 12h time point to the last

 time point with corresponding static layouts.

- Choice between two sizes of the vertex shapes: actual size, defined in the input file,

 and the unified size for all vertices (Real vertex size On/Off).

- Multiplying factor for controlling vertex size (Vertex size factor).

- Font size of the vertex labels (Vertex label font size).

- The size of the SVG window (Svg window size).

- Selection of showing vertices in front of lines or vice versa, showing lines in front of

 vertices (Vertices shown in front of lines).

- Selection of relations in the HTML window in the multiple network case (Multiple

 relations checked on Html window load).

- Choice between two line widths: actual width, defined in the input file, and the

 unified width for all lines (Real line width On/Off).

- Multiplying factor for controlling line width (Line width factor).

- The opacity of lines (Line opacity).

 9

Let's take a look at some examples, showing the usage of the choices listed above:

1. To examine dynamic layouts or static layouts of a temporal network more precisely,

increase the duration length of dynamic layout or the duration length of static layout

respectively (1 second by default).

2. To examine a temporal network with many time points, it is easier to focus on some

specific dynamic layouts. Such focus can be made by setting the numerical list of dynamic

passes of network between time points to be shown. The default list is 1-* which means

that all dynamic passes of network should be shown.

3. Choice between the actual vertex size, defined in the input file, and the unified size for all

vertices, is known from the program package Pajek. The second option is used when we

are not interested in actual vertex sizes or when the vertices are too large to display.

4. In order to make all vertices in the layout larger or smaller, increase or reduce vertex size

factor. Default vertex size factor is 1.0.

5. Setting the font size of the vertex labels is also an option known from program package

Pajek. Default font size is 12.

6. Dynamic layout of the network can be used as part of a web page. To define the size of

the SVG window which shows the dynamic layout choose between the following units:

cm, inch, px. Default size of the SVG window is the whole display.

7. In a multiple network case with many relations the dynamic layout might not be clear

enough to research the network visually. Use the option 'Multiple relations checked on

Html window load' in order to reduce the number of relations to be shown. By default all

relations are shown.

8. Choice between the actual line width, defined in the input file, and the unified width for

all lines, is known from the program package Pajek. The second option is used when we

are not interested in actual line widths or when the lines are too thick to display.

 10

9. In order to make all lines in the layout thicker or thinner, increase or reduce line width

factor. Default line width factor is 1.0.

10. If the network contains multiple lines some of the lines might not be visible in the layout,

because they are covered by other lines, which connect the same vertices.

In the program package Pajek this problem can be solved by using the command

 Net → Transform → SortLines → LineValues → Descending, which sorts the lines

 by values in descending order. To solve this problem in the program

 PajekToSvgAnim, reduce the level of line opacity using the following scale:

 1 - lines are completely opaque,

0.75 - lines are partly transparent,

 0.5 - lines are medium transparent,

0.25 - lines are very transparent,

 0 - lines are completely transparent or invisible.

 We can choose any value between 0 and 1, not just a value from the scale. Default

 value is 1.

